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TIME-FIXED RENDEZVOUS BY IMPULSE FACTORING WITH

AN INTERMEDIATE TIMING CONSTRAINT

By Richard N. Green, James F. Kibler, and George R. Young

Langley Research Center

SUMMARY

A method is presented for factoring a two-impulse orbital transfer into a three- or

four-impulse transfer which solves the rendezvous problem and satisfies an intermediate

timing constraint. Both the time of rendezvous and the intermediate time of alinement

are formulated as any element of a finite sequence of times. These times are integer

multiples of a constant plus an additive constant. The rendezvous condition is an equal-

ity constraint, whereas the intermediate alinement is an inequality constraifit. The two

timing constraints are satisfied by factoring the impulses into ollinear parts that vecto-

rially sum to the original impulses and by varying the resultant period differences and

the number of revolutions in each orbit. 7 Five different types of.solutions arise by con-

sidering factoring either or both of: the two impulses into two or three parts with a limit

of four total impulses. The impulse-factoring technique may be applied to any two-

impulse transfer which has distinct orbital periods.

INTRODUCTION

A major component of space exploration is the mission involving orbital operations.

The maneuvers in orbit often require rendezvous. In the present study, rendezvous is

defined as a trajectory which starts at a-terminal and ends at a time-related terminal

(ref. 1); and a terminal is a specified Cartesian position and velocity vector, or equiva-

lently, the set of six Keplerian orbital elements. A requirement of the orbital rendezvous

may be that the maneuver be completed at specified times (time-fixed rendezvous). The

time-fixed rendezvous is contrasted to the trajectory which has no limitation on the ren-

dezvous time (time-open rendezvous). Another requirement of the orbital rendezvous

may be that the transfer trajectory satisfy an intermediate timing constraint. For exam-

ple, to reach a particular true anomaly within a prespecified timing error is an inter-

mediate inequality constraint on the transfer trajectory. The problem addressed in this

analysis can thus be described as a time-fixed rendezvous with an intermediate timing

constraint.



An orbital transfer between two general orbits can be achieved in two impulses.
However, the time limitation for fixed-time rendezvous severely hinders the various ren-

dezvous schemes which require waiting for an initial orientation before making the two-

impulse transfer. Several authors have investigated alternative methods which require

more than two impulses to complete the rendezvous. Van Gelder and associates (ref. 2)

accomplished a three-impulse time-open rendezvous between coplanar orbits by splitting

one Hohmann impulse into two equivalent impulses to obtain rendezvous with the same AV

as the Hohmann transfer. Straly (ref. 3) investigated three-impulse time-open rendezvous

with a circular target orbit by making a phasing impulse after arriving in the plane of the
target orbit. Roth (ref. 4) used a bi-elliptic transfer between circular coplanar orbits to

achieve time-open rendezvous. Bender (ref. 5) investigated three-impulse time-open ren-
dezvous by splitting one of the impulses of the nonrendezvous optimum two-impulse trans-
fer. Eckel (ref. 6) found a minimum-time rendezvous by a technique similar to Bender's.
Finally, Doll (ref. 7) determined optimal multiple impulse time-fixed rendezvous trajec-

tories, but his method requires elaborate estimates of the transfer and does not always

yield a solution. In no instance do the rendezvous schemes consider the possibility of an
intermediate timing constraint, and most do not consider time-fixed transfers between

general terminals.

The purpose of the analysis presented herein is to present a solution to the time-

fixed rendezvous between general orbits with an intermediate timing constraint. The

approach taken is first to determine a two-impulse orbital transfer which satisfies the

geometry (position and velocity) of the rendezvous condition and then to adjust the timing
in the geometry solution to satisfy the time constraints. The two-impulse geometry solu-
tion can be any set of maneuvers which transfers from a completely specified initial orbit

to a completely specified final orbit or rendezvous orbit. One example is the two-impulse
transfer of McCue (ref. 8). An example of a two-impulse transfer tailored to a particular
mission is presented in appendix A. Next, the timing in the geometry solution is adjusted
to satisfy the intermediate timing constraint and the time of rendezvous. A coarse adjust-

ment of the timing can be achieved by allowing the spacecraft to wait in orbit for a number
of revolutions before proceeding to the next orbit of the two-impulse transfer. Varying
the number of revolutions in each orbit will permit the timing to be adjusted without alter-
ing the geometry solution. Vernier adjustments of the timing can be achieved by applying

only part of the impulse, waiting a number of revolutions, and then applying the remainder
of the impulse. If the two parts of the impulse are both applied at the same point and vec-
torially summed to the original impulse, then the timing in orbit is adjusted while the
resulting geometry is unchanged. This approach to solving the rendezvous problem is

termed the impulse-factoring technique. It has also been called splitting, looping, phas-
ing, and epoch changing by various authors.
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The factoring of an impulsive velocity

maneuver to adjust the timing is quite simple Initial orbit
In it al obi

and is depicted in figure 1. The impulsive Factored orbit/Factored orbit-N ,
velocity maneuver is AV and is applied to

the initial orbit to establish the transfer "Transfer orbit

orbit. If the impulse is factored by the

velocity factor av and only part of the

impulse is applied (av AV), then an inter- a v

mediate or factored orbit is established. (1-a )AvV

This orbit has a period which is generally

different from either the initial or the Figure 1.- Impulse-velocity factoring.

transfer orbit and causes a change in the time of periapsis passage. Adjustments in tim-

ing can be made by the proper choice of the factor av. To complete the maneuver from

the initial orbit to the transfer orbit requires that the remaining part of the impulse,

(1 - av)AV, be applied. Thus, an impulsive velocity maneuver can be factored to alter

the timing while the orbital geometry is preserved.

The full potential of impulse factoring has previously been ignored. Some authors

have applied one factor and restricted it to lie in the range 0 to 1. This restriction

results in no increase in the cost of the AV maneuver. However, in some cases the

restriction does not allow a time-fixed rendezvous. In the present investigation, the

range of rendezvous is extended by allowing factors outside the range 0 to 1. Even though

the sum of the two resulting impulses may be larger than the original impulse, this tech-

nique yields a time-fixed rendezvous solution that is often acceptable. In addition, this

investigation considers using two factors to satisfy two timing constraints. One factor

may be applied to each impulse of the two-impulse geometry solution, or both factors

may be applied to the same impulse, whereby the impulse may be factored into three

parts. There are three such schemes to factor a two-impulse geometry solution into a

four-impulse rendezvous solution. In addition, there are two three-impulse rendezvous

solutions which result from applying only one factor to either impulse. In all, five dis-

tinct cases arise and are discussed subsequently in detail in the section "Analysis."

An example problem using the impulse-factoring technique is presented in the sec-

tion "Application." A further application is presented in reference 9.

SYMBOLS

a semimajor axis, kilometers

C1,C2, C3' constants

C4 , C5 , C6 J
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e eccentricity

f true anomaly, degrees

H component of H

Hf unit vector along angular momentum vector

i inclination, degrees

I,J,K,L number of revolutions relative to fo in initial, ac-, transfer, and

-orbit, respectively

I',J',K',L' number of revolutions relative to fa in initial, a-, transfer, and

1-orbit, respectively, prior to alinement

Ia number of revolutions relative to fa prior to alinement

I s  upper bound on total number of revolutions

m integer denoting time of alinement (see eq. (2))

M number of revolutions relative to fa in final orbit prior to alinement

n integer denoting time of rendezvous (see eq. (1))

P orbital period, hours

P,Q,W orbital plane coordinate system, where P is directed toward periapsis,
Q is in orbit plane advanced from P by a right angle in direction

of increasing true anomaly, and W completes right-handed system

r radius from center of planet, kilometers

r unit radius vector

R rotation matrix from the P,QWV to the X,Y,. coordinate system

t timne, hours
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ta time of alinement, hours

tr time of rendezvous, hours

V orbital velocity, kilometers/second

X, Y, Z rectangular Cartesian coordinate system

S,Y', Z' rectangular Cartesian coordinate system defined in appendix A (sketch B)

a period factor to establish a-orbit

1v velocity impulse factor to establish a-orbit

0 period factor to establish P-orbit

O¢ velocity impulse factor to establish -orbit

y flight-path angle, degrees

6 latitude constraint on spacecraft, degrees

6p latitude of periapsis, degrees

AVT sum of velocity impulses, kilometers/second

E timing error at alinement, hours

C time between alinement opportunities, hours

7 time between rendezvous opportunities, hours

0 declination of spacecraft, degrees

X discretization variable for E

A right ascension, degrees

A gravitational constant, kilometers 3 /second 2
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angle between two orbital planes, degrees (see appendix A, sketch C)

Ta time of first alinement opportunity, hours

Tr time of first rendezvous opportunity, hours

05 partial sum of orbital revolutions

4 true anomaly constraint on spacecraft, degrees

w argument of periapsis, degrees

n longitude of ascending node, degrees

Subscripts:

b upper bound

f final orbit

min minimum

o initial orbit

r,h,n radial, heading, normal

p,q,w P,Q,WV coordinate system

t transfer orbit

x,y,z X,Y,Z coordinate system

x',y',z' X',Y,Z' coordinate system

a alpha orbit

0 beta orbit

1, 2, . .. , 6 first, second, . .. , sixth

6



Superscripts:

a alinement

i in

o out

Notation convention:

ci(x) closest integer to x

Ax increment of x

xI absolute value of x

min f(x) minimum value of f(x) over the range of x
x (

- implies

x vector x

sgn(x) sign of x

ANALYSIS

The method of impulse factoring is applied to a two-impulse orbital transfer so that

both an intermediate timing constraint and a final rendezvous constraint are satisfied.

The intermediate timing constraint is defined as an alinement of the spacecraft with some

object of interest. For example, alinement could correspond to a close approach with

another spacecraft or satellite or it could correspond to the reconnaissance of a surface

feature. Essentially, it requires that the spacecraft reach a given true anomaly within a

specified interval of time. In addition, the rendezvous condition requires that the space-

craft achieve a specified position and velocity at a specified time.

Prior to the application of the impulse-factoring method, a two-impulse orbital

transfer which satisfies the orbital geometry of the rendezvous condition is determined.

This "geometry" solution establishes the required position and velocity at rendezvous but

does not establish the proper timing. The geometry solution can be determined by various

means and is dependent upon the specific problem. Since the impulse-factoring method
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is independent of the characteristics of the geometry solution, except that the orbital
periods are distinct, the determination of the geometry solution is not discussed herein;
however, an example of a typical two-impulse solution is presented in the section
"Application."

The geometry solution specifies the orbital elements of the initial, transfer, and
final orbits, which remain fixed. Quantities defined on these three orbits are denoted by

subscripts o, t, and f, respectively. Also
specified (fig. 2) are the true anomalies where
the spacecraft goes "into" the orbits fi and

where it goes "out" of the orbits fo. In addi-
tion the true anomaly of the alinement fa

can be determined for the specific problem

of interest. All true anomalies represent a
point in orbit and are defined between 00
and 3600. The time increment At between
two true anomalies is denoted by its super-

10
fo scripts. For example, Att is interpreted

a as the time interval on the transfer orbit
from ft to fo and is a positive quantity
less than one orbital period. The actual

Figure 2.- True anomalies, time in an orbit is Atio plus an integral
number of orbital periods. The magnitudes of the two-impulse maneuvers are denoted
by AV 1 and AV 2 . These two velocity maneuvers are factored to satisfy the timing
constraints.

The rendezvous condition requires that the spacecraft achieve a specified position
and velocity at a specified time. The proper position and velocity are satisfied by the
choice of the geometry solution and the proper timing is achieved by factoring the impulse
maneuvers. If the point of rendezvous is defined as the entry point into the final orbit f4
the time of rendezvous tr is the sum of the time spent in each orbit from the initial
point fo to the final point f. The initial point f corresponds to zero time. Thus,poit fto he ina pont he nital oin f correspondstozrtieThs
the timing constraint for rendezvous is given by

tr = Tr + nj (1)

where n = 0, 1, 2, . . ., nb and Tr and 77 are constants. The parameter Tr is the
time of the first rendezvous opportunity and 71 is the time between rendezvous opportu-
nities. The value of the integer variable n is bounded by nb which limits the time of

.rend... Th iff.r .."t rendezvous opportunMites correspond to the times at which a
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rendezvous is possible. For example, if the problem were to dock the spacecraft with a

satellite for which the orbit coincided with the final orbit, then a rendezvous opportunity

would occur each time the satellite passed through the rendezvous point fi. In this case

T r would be the length of time for the satellite initially to achieve the true anomaly f4
and 7 would be the period of the final orbit. It might be that other mission constraints

only permit rendezvous opportunities on alternate passages of the rendezvous point. In

this case 77 would be twice the orbit period.

The alinement constraint requires that the spacecraft reach a given true anomaly fa

within a specified interval of time. If the time of alinement ta is defined as the time

from the initial point fl to the alinement point fa, then the inequality timing constraint
0

for alinement is given by

-b - ta (a+m ) _-eb (2)

where m = 0, 1, 2, . . ., mb. The parameter Ta depends upon the orbit on which aline-

ment occurs; C is a constant denoting the time between alinement opportunities. The

bounds on the timing error for alinement are ±Eb and the bound on the integer variable

m is mb.

The orbit on which alinement occurs is not specified. However, it is required that

alinement occur on the la revolution. That is, fa is passed Ia times before aline-

ment occurs. It should be emphasized that Ia is a specified constant and imposes a

constraint on the solution. If Ia = 0, then the alinement must occur the first time the

spacecraft reaches fa. Although Ia defines the number of revolutions prior to aline-

ment, it does not define the alinement orbit until the number of revolutions in each orbit

has been determined. Once this is accomplished, the alinement orbit can be determined

by the logic of table 1.

The timing constraints on rendezvous and alinement are satisfied by the method of

impulse factoring. Applying only part of the AV at fo, waiting a number of revolutions

on the intermediate orbit, and then applying the remainder of the AV at the same place

allows the timing in orbit to be altered while the orbital geometry is preserved. Thus,

varying the percentage of the AV applied and the number of revolutions in the various

orbits satisfies the timing constraints. The factored intermediate orbits are designated

the a- and P-orbits since they result from applying the factors av and Ov to either or

both AV 1 and AV 2 . Corresponding to each velocity factor is a period factor which

denotes the accompanying change in period. For example, if AV 1 is factored by ov

so that the a-orbit is intermediate to the initial and transfer orbits, then the resulting

period of the a -orbit is given by
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P = Po + a(Pt - Po) = Po + a APto (3)

where a is the period factor corresponding to av . Since the constraints are expres-
sions of time, the period factors a and 0 are more tractable than the velocity factors
av and wv. Once the period factors are determined, the corresponding velocity factors
are easily determined (appendix B). A factor between zero and one results in two
impulses which have the same total AV as the single impulsive maneuver. A factor
outside this range results in two impulses which sum to a higher total AV than the
original single impulse. If the factor is between zero and one, the transfer is said to be
"free" (without penalty).

The impulse-factoring method also determines the number of revolutions in each
orbit. A revolution is defined as the number of times the spacecraft passes the maneuver
point fo without performing the maneuver. The number of revolutions in each of the
four orbits (initial, a, transfer, and 0) are denoted by the integer variables I, J, K,
and L, respectively. Frequently, it is advantageous to limit the total number of revolu-
tions prior to rendezvous. That is,

I+J + K + L Is  (4)

The two-impulse geometry solution may be factored into three or four impulses by
considering all combinations of factoring either or both impulses into two or three parts.
For convenience, define "bisect" to denote factoring into two collinear parts that vecto-
rially sum to the original impulse, and "trisect" to denote factoring into three collinear
parts that vectorially sum to the original impulse. If the impulse is not factored, it is
said to be applied in "full." Limiting the total number of impulses to four or less allows
five different types of solution: (1) bisect-full (BF), (2) full-bisect (FB), (3) bisect-bisect
(BB), (4) trisect-full (TF), and (5) full-trisect (FT). The first two types are three-impulse
solutions and the remainder are four-impulse solutions. It has been assumed that the
full-full or geometry solution does not satisfy the time constraints.

The rendezvous problem with an intermediate time constraint as proposed herein
does not have a unique solution. In fact, it is possible for all five types of solutions to
satisfy the time constraints. The desired solution is the one which minimizes the sum
of the impulses. For example, in a solution of the bisect-bisect type, the sum of the
impulses is given by

AVT = Ia AV 1 + 1 - vl AV 1 + -v AV 2 + 1 - iv AV 2  (5)

Thus, the problem consists of determining the set of infateger variables I, T J, K, T -

n and the factors a and 3 which satisfy the rendezvous and alinement constraints at
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the least cost for the given geometry solution. To determine this solution, the variables

I, J, K, and L are systematically varied within the following limits:

I Imin =0

J Jmin > 0

K > Kmin = 0

L Lmin > 0

I+J + K + L _I s

where the minimum values of I, J, K, and L are imposed on the solution. The min-

imum values of J and L must be greater than zero to avoid eliminating their respec-

tive orbits. Next, for each set of I, J, K, and L, the best values of a, 0, m, and n

are determined for each of the five different types of solutions. In this manner, the type

of solution and the values of I, J, K, L, m, n, a, and I which minimize the sum

of the impulses are determined.

In the remainder of this section the necessary equations for each of the five types

of solution are developed.

Bisect-Full Solution

The bisect-full type of solution is a three-impulse solution where AV 1 is factored

by av to establish the a -orbit, which follows the initial orbit and precedes the transfer

orbit. The AV 2 impulse is unaltered and applied in "full"; that is, the spacecraft tra-

verses first the initial orbit, then the a -orbit, the transfer orbit, and the final orbit. The

rendezvous time is satisfied by the a -factor which also dictates the alinement time. If

the alinement time is within bounds, then the solution is acceptable, which means that the

solution satisfies the two time constraints. This result is not intended to infer, however,

that the solution is complete since other acceptable solutions may yield a lower total AV.

If the alinement time is not within bounds, then the bisect-full solution is unacceptable.

For the bisect-full type of solution, the spacecraft proceeds from fo on the initial

orbit to the true anomaly of exit fo. It then makes I complete revolutions in the initial

orbit relative to fo before transferring to the a-orbit. Since the transfer in and out of

the a-orbit occurs at the same point (fi = fo), the spacecraft makes J complete revolu-

tions in the a -orbit before transferring into the transfer orbit. It then traverses to fo

makes K complete revolutions relative to fo, and transfers to the final orbit at f}

11



which is the rendezvous point. Thus, equating the rendezvous time (eq. (1)) and the time

in orbit until the spacecraft arrives at fl yields

Atio + IPo +JPa + Ato + KPt = Tr + n (6)

where n = 0, 1, 2, . .. , nb. Substituting equation (3) for Pa into equation (6) yields

Ato + IP + J(Po + a APto) + Ato + KPt= Tr + nq

For a given value of I, J, and K,

Cla + C2 = nn (7)

where

C1 = J APto

C2  (I + J)Po + KPt + Ato + At Tr

and the C's are constants. Thus, the value of a is given by

nq - C2
SCl

and the total cost is

AVT = 1a AV1 + 1 - av AVI + AV 2  (9)

where av is determined from a (appendix B).

Next, the defining equation for the alinement is written. Since this equation takes

a different form for alinement on different orbits, each possibility is considered in turn.

For a given value of I, J, and K, the alinement orbit is determined by table 1.

(a) Initial orbit.- Assume alinement on the initial orbit. Equating the time of aline-

ment to the time of arrival of the spacecraft at the alinement point yields

ia (10
Atoa 

0  P o +E 7 P a,o + m( (10)

where m = 0, 1, 2, . .. , mb and Atia is the time increment on the initial orbit from
mbAt 0

f0 to fa . The time error in the spacecraft arrival at the alinement point is denoted

by e. Solving equation (10) for e and minimizing over m gives

12



E = min m + C3  (m = 0, 1, 2,. . .,mb) (11)
m

where

ia pC3 = a,o - Ato Po

The parameter I' is the number of revolutions referenced to fa before the spacecraft

reaches the alinement point. Summing the angular traverse to the alinement point and

equating it to the required traverse yields

Afia + 360oa = Afia + 360 0 V

or

I' = Ia

Now, if E - cb, the solution is acceptable and AVT can be minimized over n, where

n = 0, 1, 2,. . ., nb -

(b) a -orbit.- Assume alinement on the a -orbit. The defining equation for alinement

is

Ato + IPO + Atia + JPa + = Ta, a + mC (12)

ia
The values of Atica and Ta, a require a knowledge of the a-orbit which is yet to be

determined. To overcome this difficulty, assume a linear transition of these quantities

with respect to a between the initial and transfer orbits. Thus, the following approxi-

mations are made:

Atia Atoa + a (At a a- t a) (13)

Ta, a Ta,o + a (Ta, t Ta,o) (14)

Substituting equations (3), (13), and (14) into equation (12) yields

Atio + IPO+ Atoa + (Atia ta)j +J'(Po + o APto ) +E= 
Ta,o + a(ra,t - Ta, o) +me

or

C 3a + C 4 + E = m (15)

13



where

C3 = J' APto+ Ata - Atoa - Ta,t + a,o

Co oa _ aO
C4 = (I + J')Po + Ato° + At a- Ta, o

If the position of alinement is assumed to be relatively insensitive to changes in orbit so
that Afioa + 3600 1a is a good approximation to the angular traverse prior to alinement,
then

ia 0 'Afio + 0 ia 0

Afla +36 0
a  Af+360 I+a +360 0 '

Assuing hat ia oawhc
Assuming that Afoa : Afoa, which is consistent with the previous assumption, and solving
for J' yields

FAf io foa aia
J = ei a-I- 0 o

a 3600

where the operator "ci" denotes closest integer. Solving equation (15) for E and elimi-
nating a with equation (8) gives

S= min m - (n, -JC2 )C 3 - C4  (16)
mn[1

where n= 0, 1,2,. . .,nb and m=0, 1,2,. .,mb. If E 5 Eb, then the solution is
acceptable. Usually only one set of m and n will satisfy E :_ Eb . However, if more
than one acceptable solution exists, one can determine the acceptable values of m and n
which yield the least cost according to equation (9).

(c) Transfer orbit.- Assume alinement on the transfer orbit. The defining equation
for alinement is

Atio + p a + tia + K'Pt + E = Tat + m

Substituting for Pa and collecting terms yields an equation of the form

C 3 a + C4 + 6 = mC (17)

14



where

C 3 = J pto

C4 = (I + J)Po + K'Pt + Ato + At - Ta,t

, .Af io +af a gia
K' =ciIa - (° + a 0 3 Af0

3600

The simultaneous solution of equations (8) and (17) is given by equation (16).

(d) Final orbit.- Assume alinement on the final orbit. To this point it has been

accepted that the rendezvous condition is satisfied at the entry point into the final orbit.

However, once the rendezvous condition is satisfied, it is continuously satisfied unless

the orbit is altered. Since the final orbit remains unaltered, alinement on the final orbit

is allowed to occur on any successive passage of fa provided it is on the Iath revolu-

tion and the time of alinement does not exceed ta = Ta,f + mb( + Eb. If the number of

revolutions relative to fa in the final orbit prior to alinement is denoted by M, the

defining equation for alinement is then

Atio + IPo + JPa + At o + KPt + Ata + MPf +E = Ta,f + m

Substituting for Pa and collecting terms yields an equation of the form

C3a + C4 + E = m (18)

where

C 3 = J APto

C4 = (I + J)Po + KPt + MPf + At o + At o + t a  a,f

M=ci -I-J-K- o o a )
+At+Affia i~

1 a 3600

The simultaneous solution of equations (8) and (18) is given by equation (16).

For the bisect-full type of solution the alinement can occur on four different orbits.

Each of these possibilities has been fully investigated and results are summarized in

table 2.
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Full-Bisect Solution

The full-bisect type of solution is a three-impulse solution where AV2 is factored

by Ov so that the f-orbit follows the transfer orbit and precedes the final orbit. The

AV 1 impulse is unaltered. This type of solution is similar to the bisect-full type with

the difference being the factoring of AV 2 as opposed to the factoring of AV 1 . Since

the derivations of the governing equations are so similar, they are not developed here but

are summarized in table 3.

Bisect-Bisect Solution

The bisect-bisect type of solution is a four-impulse solution where AV 1 is factored

by av and AV 2 is factored by Ov in such manner that the order of the orbits is as

follows: initial orbit, a -orbit, transfer orbit, f-orbit, final orbit. In this type of solution

the two factors (a and 3) are so determined that the two time constraints are satisfied.

The solution is determined by the simultaneous solution of the equations governing

the alinement and rendezvous conditions. The rendezvous condition is

Atio + IP o + JPa + Atto + KPt + LPO = Tr + n7

An expression for the period of the f-orbit is

P = Pt + Aft (19)

which is similar to the expression for P. (eq. (3)). Substituting these expressions for

the periods in the rendezvous equation yields

C l a + C2 fl + C3 = n7 (20)

where

C 1 = J APto

C2 = L APft

C3  (I+J)Po + (K + L)Pt +At io +Ato - r

The cost of the solution is given by

AVT = av AV1 + 1 -a AV1 v AV2 + 1 v AV 2  (21)

Next, the governing equations for alinement are derived.
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(a) Initial orbit.- Assume alinement on the initial orbit. The alinement condition is

given by equation (11) as

E= min m + C4 0 (m=0, 1, 2, ., mb)
m

where

C4 = Ta,o - ia IaPo

If e 5 Eb, then the solution is acceptable and AV T is minimized subject to equation (20).

From equation (20),

n? - C2 - C3
C1

and substituting into equation (21) with the assumption that a z a and v = 0 gives

AV ? - C2/3 - C 3 AV C1 - n + C203 + C3AV+
T AV 1 + 10 AV 2 + 1 - AV 2

It is desired to minimize AVT over n and 3. For a given value of n, AVT

is a piecewise linear function of 1 with corners (that is, discontinuous first derivatives)

at the points where each of the four terms equal zero. Since AVT is a piecewise linear

function, its minimum must occur at one of the four corners created by the absolute-

value operator. Another possibility exists if there is a range of 1 in the closed inter-

val 0 to 1 so that a is also in the same range. In this case, the factoring is "free" and

AVT = AV 1 + AV 2 over the closed interval 0 to 1. Thus, there exists a family of solu-

tions which minimize AVr. It can be shown that one of these solutions corresponds to

one of the solutions obtained by setting each term of AVT equal to zero. It follows that

for either case AVT is minimized by either a = 0, a = 1, 3 = 0, or 1 = 1 and the

four-impulse bisect-bisect solution degenerates to one of the types of three-impulse solu-

tions. All four cases must be investigated by using equation (20) to determine the other

factor; and AVT is minimized over n = 0, 1, 2, . . ., nb. Since av = a and Ov = 3

at the two points zero and one, the approximation is exact for the four degenerate cases.

(b) a -orbit.- Assume alinement on the a -orbit. The alinement condition is given

by equation (15) as

C4 a + C6 + E = mc (22)
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where

C4 = J' APto + At ia - Atoa -
T a,t + Ta,

tt- t0  t+Ta,o

C6 -=(I + J')Po + Ato + t a,o

C6 io oa _ afia
, .~ + Afoai

Scia ( + 3600

The solution is obtained by minimizing AVT subject to equations (20) and (22) where

-eb _ € _b, n=0,1,2,. .. , nb, and m= 0,1,2,. ., mb. The solution is simplified

by discretizing E as E = Xb where X = -1, 0, 1. Thus, solving equation (22) for 01

and equation (20) for 0 yields

AVT = min (I v AV 1 + 1 - Ot AV 1 +v AV 2 + 1 - v AV 2) (23)
n, m, A . )

where

m(-k b  C6  0o! - C1 V)

C04
o = C4 az

=ni- Cla - C3 (P-v)

C2

n=0, 1, 2,. . .,nb

m=0, 1, 2, . ., mb

X= -1, 0, 1

and av and Gv are derived in appendix B.

(c) Transfer orbit.- Assume alinement on the transfer orbit. The alinement is

given by equation (17) as

C4a + C6 + E = mn (24)
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where

C4 = J APto

io ia
C6 = (I + J)Po + K'Pt + Ato +Att- "a,t

( .Af o +A a _ a

K' = ciIa -I - J ( +)3600

The solution to equations (20) and (24) is given by equation (23).

(d) f-orbit.- Assume alinement on the f-orbit. The defining equation for alinement

is

Ato +IP +JP +Ato+KPt + At+LtPa +  L'+ a,+m

where

Atia Aoa + i Aa - Atoa)

Ta, T a,t + (7a, f - Ta,t)

Making these substitutions along with equations (3) and (19) yields

C40 + C513 + C6 + E = m (25)

where

C4 = J APto

ia oa
C5 = Atf Att + L APft -Ta,f + Ta,t

C6 = (I + J)Po + (K + L')Pt + Ato + At0 + At a - a,t

If Io io +Aoa _ ia0+ Aft +At M
cL ka 3600
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In general, equations (20) and (25) can be solved simultaneously for a and /3. Thus,

the solution is

AVT = mn av AVl + 1 - avAV1+ v AV 2 + 1 -v AV2) (26)
n, m, Xi

where

-(nq - C 3 )C 5 + (m( - C6 - XEb)C2
a C01(C2 - C5) (27)

ni - C3) - (m - C6 - XEb)

= C2 - C (- ) (28)

n=0, 1, 2, . ., nb

m=0, 1, 2, . .,mb

X = -1, 0, 1

and the relation C4 = C1 has been incorporated.

This solution is well behaved unless C1 = 0 or C2 = C5. The constant

C 1 = J APto must be nonzero since J > 0 and APto * 0 because the geometry solu-

tion is restricted to orbits with distinct periods. If C2 = C5, then from equations (20)

and (25) the minimum value of E is

S= min(n - C3) - (m - C6) (29)
m, n -

where n=0, 1,2,. . .,nb and m=0, 1,2,. . .,mb,and

(n - C3) - C2 (30)
C 2/3

a= C1 (a - Omv) (30)

If E ! b, then the solution is acceptable and AVT is minimized. From equation (30)

AVT can be expressed in terms of four continuous linear functions of either a or /3.

Since the minimum of AVT must occur at one of the corners created by the absolute

operator, either a = 0, a = 1, 3 = 0, or 13= 1. The minimum of AVT is chosen from

these four possibilities.
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(e) Final orbit.- Assume alinement on the final orbit. The defining condition for

alinement is given by

Atio + IP o + JP C + Atlo + KPt + LPp + At' a + MPf +E Taf + mC

Substituting for Pa and P and collecting terms yields

Cla + C2 0 + C4 + e = m (31)

where

'"~'K 'P + P+At 0  10 la
C 4 = (I + J)Po + (K + L)Pt + MPf + Ato + At + Atf - Ta,f

o + io ia
M= ci a - I- J - K - L - 3600

From equations (20) and (31) the minimum value of E is

E = mi(J( n - C3 ) -m( - C4)
m,n )

where n= 0, 1,2,. . ., nb and m=0, 1, 2,. .. , mb. If E !-b the solution is accept-

able and AVT is minimized subject to equation (20); that is,

n?7 - C20 - C3a = n- C 1  aC3  - a v) (32)

From equations (32) and (26), AVT can be expressed as the sum of four continuous

linear functions of either a or P. Since the minimum of AVT must occur at one of

the corners created by the absolute operator, either a = 0, a = 1, 0 = 0, or 3 = 1. The

minimum of AVT is chosen from these four possibilities.

For the bisect-bisect type solution the alinement can occur on any of the five orbits.

Each case has been investigated and is summarized in table 4.

Trisect-Full Solution

The trisect-full type of solution is a four-impulse solution in which AV 1 is factored

into three parts by a and 0 and AV 2 is applied in full. The order of the orbits are

the initial orbit, a -orbit, /-orbit, transfer orbit, and final orbit.
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The period of the a-orbit is the same as previously defined; that is,

PO = Po + a (Pt- Po) = Po + a APto (33)

and the period of the -orbit is

P= Pa + (Pt - Pa)

or

P = Po + (a + f - ap) APto (34)

where Pa was eliminated by use of equation (33). Thus, the a -factor bisects the period

difference between the initial and transfer orbit, and the -factor bisects the period dif-

ference between the a - and transfer orbits. The result is to trisect the AV 1 impulse.

The defining equation for rendezvous is

Atio +IPo +JPa + LP + Atti o +KPt = T r + n?

Substituting for Pa and Pp (eqs. (33) and (34)) and collecting terms yields

Cla + C20(1 - a) + C3 = nq (35)

where

C 1 = (J + L) APto

C2 = L APto

C 3 = (I + J + L)Po+KPt +At io +Att - r

Equation (35) can be solved for either a or 1 in terms of the other factor; that

is,

a = nC-C 2  -C 3  (a - av) (36)

1- 0

or

ny - Cla - C3  v) (37)
C 2 (i - a)
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From equation (36) note that a value of 3 = =  L cannot be tolerated. The reason

for this restriction becomes clear by examination of the time spent in the a - and /-orbits;

that is,

JPa + LP 3 = JPa + L PI + (P t - Pa) = (J + L)Pt
L +

Thus, the time spent in the a - and -orbits is independent of a if 3 J + L and theL
rendezvous condition cannot be satisfied. Essentially, the problem is that the a -orbit

causes a phase shift and the -orbit causes an equal and opposite shift relative to the

period of the transfer orbit. From equation (37) note that a = 1 cannot be tolerated.

Physically, a value of a = 1 results in the a -orbit coinciding with the transfer orbit

and there is no period difference for 3 to factor. For the acceptable solutions the cost

is given by

AVT= av AV 1 + 10v 1 - av AV 1 + 1 - i3v 1 1 - av AV 1 + AV 2  (38)

Next, the governing equations for alinement are derived.

(a) Initial orbit.- Assume alinement on the initial orbit. The alinement condition

is given by equation (11) as

E = min m +C 4  (m = 0, 1, 2,..., mb)
m

where

Tao_,ia
C4  0 'ao aPo

If E _5 eb, the solution is acceptable and AVT is minimized subject to equation (35). As

before AVT can be expressed as the sum of three continuous functions of either a

or 3. Since the minimum of AVT must occur at one of the corners created by the

absolute operator, either a = 0, 3 = 0, or 3 = 1. The minimum of AVT is chosen

from these three possibilities.

(b) a-orbit.- Assume alinement on the a -orbit. The alinement condition is given

by equation (22) as

C4 a + C5 + E = m (39)

where

C4 J'Pto + A a _ Atoa _ Ta,t + T a,o
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C5  (1 + J')Po + t o + Ata - 'a,o
Af + &oa_ fi

J'= ci a - I - o 0
S3600

Solving equation (39) for a gives

m( - X>Eb - C5a = C4 (a -av) (40)
0 4

Thus, the solution is obtained by minimizing AVT where a is given by equation (40);
/ is given by equation (37); and n = 0, 1, 2, . ., nb; m=0, 1, 2,. . ., mb; X= -1, 0, 1.

(c) /-orbit.- Assume alinement on the -orbit. The alinement equation is given by

Atioo +Ip+ JPa + t a + L'P + e = Ta, + m (41)

The values of Atpa and Ta, p require a knowledge of the a- and /-orbits which are yet
to be determined. This difficulty can be overcome by making the following approximations:

Ati a o At 0 + (a + /3- -Ato

Ta, 2' Ta, o + (a + / - a )('Ta,t - Ta,o)

Substituting these approximations, along with equations (33) and (34), into equation (41)
yields

C4a + C50(1 - a) + C6 + E = m (42)

where

C4 = (J + L') APto + tia - oa  a t  ao
4W+4,~Lt At -A 0  'Ta, t+'a,o

C5 = L' Apto a t _ t at ao

o Ta, t + 'Ta,o

C6 = (I + J + L')P o + Atio + Atoa _ao

o o 0 Ta,o

, fio + &o a 'a)L cil -I-J- o o A

L 3600
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Solving equations (35) and (42) for a yields

S(n? - C3)C 5 - (mC - C6)C2 + C2XEb (a - (43)a= ca5-c 4- a(43)
C1C5 - C2C4

Thus, the solution is obtained by minimizing AVT where a is given by equation (43);

3 is given by equation (37); and n= 0, 1, 2, . .. , nb; m = 0, 1, 2,. . ., mb; X= -1, 0, 1.

(d) Transfer orbit.- Assume alinement on the transfer orbit. The alinement equation
is given by

Atio + IPo + JPa + LPP3 + Atia + K'Pt + E = Tat + mC

Substituting for P. and PO and collecting terms yields

Cla + C2 (1 - a) + C4 + E = m (44)

where

C4 = (I + J + L)Po + K'Pt + Atio + At a _ a, t

(io ia ia
K'=cil a-I-J-L fO +Af

3600

and C1 and C2 are given by equation (35). It is readily seen that equations (35)

and (44) cannot be solved simultaneously for a and 0. Thus, solving these equations
for E and minimizing over m and n gives

E = min((n - C 3) +(m - C4)
m,n n

where n = 0, 1, 2, . . ., nb and m = 0, 1, 2, . . ., m b . I -Eb, the solution is accept-

able and AVT is minimized over the factors subject to equation (35). Here, again, the

minimization of AVT can be reduced to three possibilities, a = 0, 0 = 0, and 0 = 1.

(e) Final orbit.- Assume alinement on the final orbit. This solution is very similar

to the solution for alinement on the transfer orbit. Therefore, it is not repeated but is

summarized in table 5 along with the five cases of the trisect-full type of solution.

Full-Trisect Solution

The full-trisect type of solution is a four-impulse solution where AV 1 is applied

in full and AV 2 is factored into three parts by a and /. The order of the orbits is
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the initial, transfer, a-, 0-, and final orbit. This type of solution is similar to the trisect-

full solution with the difference being the trisecting of AV 2 as compared with trisecting

AV 1 . Since the derivation of the governing equations are so similar, they are not devel-

oped here but are summarized in table 6.

APPLICATION

As an example of the impulse-factoring technique, consider a satellite mission about

the planet Mars. Assume the satellite is initially in a known orbit. A sequence of impul-

sive maneuvers is desired that will cause the spacecraft to fly over a selected surface

feature for reconnaissance and then establish a synchronous orbit in such a way that the

surface feature is directly beneath the spacecraft at each periapsis passage. This type

of mission might involve surface mapping or it might involve establishing a proper orbit

from which to launch a surface probe.

The geometry of the mission is presented in figure 3. The Keplerian orbital ele-

ments of the initial orbit and the right ascension of the surface feature are known at some

epoch. The first task is to define a two-impulse geometry solution that establishes the

desired final orbit. The conditions imposed on the final orbit are that it have a synchro-

nous period and that periapsis be directly over the latitude of the surface feature. In

North pole Initial orbit

Transfer orbit

Final orbit

Periapsis

Surface'-
feature ' -

Martian equator

Figure 3.- Mission geometry.
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addition, the altitude of periapsis is fixed. Thus, the synchronous period and the periapsis

altitude define the shape of the orbit, that is, the semimajor axis a and the eccentric-

ity e. The condition of periapsis over the correct latitude leads to a relationship between

the orientation angles i, w, Q. Since the final orbit is not fully defined, the geometry

solution is not unique and various two-impulse solutions are possible. A specific geom-

etry solution can be defined, however, by choosing the magnitude and direction of the first

impulse, the position in the initial orbit at which it is applied, and the true anomaly of

entry into the final orbit. These five independent quantities along with the quantities

already specified uniquely define the geometry solution. (See appendix A.) Since the

choice of the five independent quantities is arbitrary, these quantities can be varied to

minimize the sum of the impulses for the geometry solution. (See ref. 10.) This mini-

mization gives the following solution:

Initial orbit Transfer orbit Final orbit

a . . . . . . . . . . *20762 21242 *20428

e . . . . . . . . . . *0.77524 0.76285 *0.76045

i . . .. . . .... . *33.20 33.86 33.24

w0 . . . . . . . . . *34.38 30.32 28.17

2 . . . . . . . . . *104.85 107.39 107.93

p . . . . . . . . . *25.23 26.11 *24.62

fi ......... *0.00 213.51 125.87

fo . . . . . . . . . 211.58 124.18 -------

fa . . . . . . . . . *-6.17 -2.63 *0.00

Afo . . . . . . . . 211.58 270.67

Afia . . . . . . . . *353.83 143.86 234.13

Afoa . . . . . . . . 142.25 233.19 -------

At io  . . . . . . . . 21.04 6.30 -------

At i a  . . . . . . . . *25.20 4.22 22.55

Atoa . . . . . . . . 4.16 24.03 -------

a . . . . . . . . *7.86 7.99 8.06

6 p .*....... . *18.01 16.33 *15.00

*Fixed quantity.

The true anomaly of alinement fa depends on the orbit. For this example it is defined

as the true anomaly directly above the latitude of the surface feature which is 150. Like-

wise, the time constant for alinement Ta depends on the orbit and is defined as the time

required for the surface feature to rotate beneath the orbit, that is, to rotate to the point

of alinement. Since the object of alinement is a surface feature, the time between aline-

ment opportunities is the rotational period of Mars (24.62 hours) which is also the
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time between rendezvous opportunities 7/ since the final orbit is synchronous. The time
constant for rendezvous 'Tr causes the surface feature to be directly beneath the space-
craft at periapsis passage on the final orbit. Numerically, it is equal to the time required
for the surface point to rotate beneath the final orbit minus the time required for the
spacecraft to pass from ff to periapsis (recall that rendezvous occurs at f), that is

Tr = 7a, f - At a

Tr = 8.06 - 22.55

Tr = -14.49 or 10.13

Since rendezvous cannot occur at a negative time, and since the time of rendezvous is
tr = Tr + n ?, where n = 0, 1, 2, . . ., nb, the time constant is modulo 77 or 7Tr = 10.13.
As a matter of interest, the latitude of periapsis 6 p on the three orbits is shown. The
only other quantities needed for the impulse-factoring technique are:

AV 1 = 0.03467 Lmin = 2

AV 2 = 0.02688 Ia = 4

Eb = 0.5 Is = 8

Imi n = 1 mb = 12

Jmin =2 nb = 11

Kmin = 1

The sum of velocity impulses is minimized for each type of solution and the results are
presented below:

Type of AVT,
solution I J K L m n a kmsec

Typeof I i _F J Ikm/sec

Bisect-full 1 2 1 --- 5 5 2.336 ----- 0.14369
Full-bisect 1 --- 1 2 5 5 ---- -0.790 .09995
Bisect-bisect 1 3 1 3 5 9 1.676 1.206 .11635
Trisect-full 1 3 1 3 5 9 1.623 4.188 .24715
L'Full-trisect 1 2 1 4 5 9 -. 586 1  .936 .09036
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None of the five types of solutions are free since all have factors outside the range 0 to 1.

The least expensive solution, however, is the "full-trisect" type of solution where aline-

ment occurs on the a-orbit (note fa is passed twice on the transfer orbit) after approxi-

mately 5 Martian days and rendezvous on the ninth day. In order to satisfy the alinement

constraint, a is required to be negative and results in additional cost relative to the

cost of the geometry solution. However, this is the least expensive way to satisfy the

rendezvous condition with an intermediate timing constraint with the given geometry solu-

tion. The flow diagram for this example is given in figure 4(a).

In the preceding numerical example the cost of the geometry solution (AV1 + AV 2 )

was minimized by varying the five independent quantities associated with the solution and

then the impulse-factoring technique was applied. If the resulting factors are outside the

range 0 to 1, then the total cost AVT will exceed the cost of the geometry solution. For

this situation the total cost may be reduced at the expense of additional calculations by

minimizing AVT over the five independent quantities. This approach involves applying

the impulse-factoring technique at each step during the minimization process instead of

only once as shown in figure 4(b). The result is to change the geometry solution in such

a way that the factoring technique is less expensive. The geometry solution resulting

from minimizing AVT is given in the following tabulation:

Initial orbit Transfer orbit Final orbit

a . . . . . . . . . . *20762 21563 *20428

e . . . . . . . . . . *0.77524 0.76868 *0.76045

i . . . . . . . . . . *33.20 33.34 33.04

w . . . . . . . . . *34.38 30.33 28.34

S . . . . . . . . . *104.85 106.54 106.98

P . . . . . . . . . *25.23 26.70 *24.62

fi . . . . ......... *0.00 230.14 113.58

fo . . . . . . . . . 227.51 111.95 -------

fa . . . . . . . . . *-6.17 -2.24 *0.00

Af io . . . . . . . . 227.51 241.81 -------

Afia . . . . . . . . *353.83 127.62 246.42

Afo a  . . . . . . . . 126.32 245.81 -------

At io . . . . . . . . 22.81 3.89 -------

At ia . . . . . . . . *25.20 2.42 23.15

Ato a  . . . . . . . . 2.38 25.23 -------

a  . . . . . . . . . *7.86 7.96 8.01
6 p . . . . . . . . . *18.01 16.12 *15.00

*Fixed quantity.
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No is F (see ref. 10) to obtain AVT

_F NO ~a minimumAE

Yes

Factor geometry solution 
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to obtain AV TN iiu
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(a) Minimum geometry cost solution. (b) Minimum total cost solution.

Figure 4.- Flow diagrams of impulse-factoring solution.



The cost of the geometry solution is AV 1 = 0.03906 and AV 2 = 0.02719 for a total cost

of 0.06625 km/sec. This result is slightly greater than that of the first example which

cost 0.06155 km/sec. However, in the second example the geometry solution has been

changed to reflect the factoring process. The results of the five types of solutions are

presented below:

Type of I J K L m n a AVT,
solution km/sec

Bisect-full 1 2 1 --- 5 5 1.186 ------ 0.07969

Full-bisect 1 --- 3 2 5 7 ---- 0.868 .06625

Bisect-bisect 1 2 1 2 5 7 1.000 .868 .06625

Trisect-full 1 3 1 3 5 9 .973 -63.013 .20688

Full-trisect 1 2 1 2 5 7 .000 .868 .06625

It is seen that the "full-bisect," "bisect-bisect," and the "full-trisect" solutions are iden-

tical and that they are free. Thus, selecting a geometry solution which minimizes AVT

instead of (AV 1 + AV 2 ) reduces the total cost from 0.09036 to 0.06625 km/sec. The

reduction in cost is not always this appreciable; however, when the cost of the factored

solution greatly exceeds the cost of the geometry solution, the potential for a cost reduc-

tion exists by minimizing AVT.

CONCLUDING REMARKS

A method has been presented for factoring a two-impulse orbital transfer into a

three- or four-impulse transfer which solves the rendezvous problem and satisfies an

intermediate alinement constraint. Five types of solutions exist and depend upon the fac-

toring scheme employed. The equations governing each solution have been derived.

The impulse-factoring technique has many advantages which make it desirable. The

rendezvous problem is simplified by first solving the orbital geometry transfer and then

satisfying the time constraints by factoring the velocity-impulse maneuvers. The method

generates a number of different solutions which satisfy the rendezvous condition and the

alinement constraint. This set of solutions is finite for a given geometry transfer, and

the minimum velocity solution can be chosen from the set. The method is easily pro-

gramed and circumvents many of the mathematical and computational problems associated

with more classical approaches.

An application of the impulse-factoring technique has been presented. An example

problem was solved by minimizing the sum of the two impulsive velocity maneuvers of
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the geometry transfer and then factoring the impulses to satisfy the time constraints.

This rendezvous solution required more velocity increment AV than the geometry

transfer. Therefore, the example problem was reworked to minimize the AV of the

rendezvous solutions by varying the geometry transfer, resulting in a reduction of AV.

It is concluded that if the rendezvous solution costs more than the geometry transfer, it

is better to determine the geometry transfer which reflects the factoring process than

merely to factor the geometry transfer of least AV.

Langley Research Center,

National Aeronautics and Space Administration,

Hampton, Va., April 4, 1974.
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APPENDIX A

TWO-IMPULSE ORBITAL TRANSFER TO ESTABLISH a, e, 6

The necessary equations for defining a two-impulse transfer from a known Keplerian

initial orbit to a partially specified final orbit are derived in this appendix. The initial

orbit is defined by ao, eo, io, co no; and the final orbit is partially specified by af, ef,

and 6 where 5 is the latitude of the spacecraft when the true anomaly has the value V.

The two velocity maneuvers are defined as (see sketch A):

AV1 (AVl,r, AV1,h, AV1,n)

AV2 (AV2,r, AV2,h, AV 2 ,n)

w

L V1, n

AA

61, h

0fo 0V r

P.

Sketch A

The problem to be solved can be stated as follows:

Given: ao, eo, io, o o, o af, ef, 5, 4, I, fo, AV1,r, AVl,h, AVl,n, f

Find: AV2 and the complete description of the transfer and final orbits.

The parameter fo is the true anomaly in the initial orbit where AV 1 is applied

and f is the true anomaly in the final orbit corresponding to the AV2 maneuver.
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APPENDIX A - Continued

Although the parameters fo, AVI,r, AV1,h, AVI,n, ff could be considered independent

variables and AV 1 + AV 2 could be minimized, this problem is not addressed here.

The first transfer is straightforward. Consider the initial orbit in the P,Q,W

coordinate system (sketch A). The magnitude of the first maneuver is simply
= 2 \1/2

AV 1 = (AV2,r + AV2,h + AV n)

and the elements of the resulting transfer orbit can be established by computing its com-

ponents of position (r) and velocity (V) in the P,Q,W system, rotating these components

to the original X,Y,Z system, and finally converting them to orbital elements. These

calculations are as follows:

ao(I- e2)
r =

1 + e o cos fo

Vo 1/2

Vo= r To)

e o sin fo

o 1/2

1 + 2eo cos fi + eo)/

cos = - sin2yo)1/2

rp = r o cos fo

r 0r 0 n 0

r =0
rq = r o sin fo

rw = 0

Vp = (V o sin yo+ AV, r)cos fo - (Vo cos yo+ AVl,h)sin fo
o) 0 AVl,h)CSf

Vq = (Vo sin y + AVI,r) sin fo + (Vo cos yo + AV 1,h)cos fo

Vw = AV1,n

R11= cos w o cos o - sin wo sin 0o cos i o
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APPENDIX A - Continued

R12 = -sin wo cos 6o - cos wo sin 0o cos i o

R 1 3 = sin 2o sin io

R21 = cos wo sin 6o + sin wo cos to cos i o

R22 = -sin wo sin 0o + cos c os o cos i o

R23 = -cos 6o sin i o

R31 = sin coo sin i o

R 3 2 = cos coo sin i o

R33 = cos io

r x = R 1lrp + Rl2rq + R13rw

ry = R21r p + R22rq + R2 3 rw

r z = R31r p + R32rq + R 3 3 rw

Vx = RllVp + R12Vq + R13Vw

Vy =R 2 1Vp + R22Vq + R 2 3 Vw

Vz = R 3 1Vp + R32Vq + R33Vw

T
rx, ry, rz, Vx, Vy, Vz, i - at, et, it, wt, Ot

where the transformation T from Cartesian position and velocity to Keplerian orbital

elements is by reference 11.

The geometry of the second maneuver is defined in sketch B. Knowing ff,

one can calculate the radius at the maneuver as

af(l - e2)
rf = J

1 + ef cos ff
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APPENDIX A - Continued

zfz

t Y

f
.- - -r * P = co i -

x

Sketch B

which defines the cos fo as

at (1- e!)

1 + et cos fo

or

cos fo t  -e2
S- etrf

sin fo= sgn(sin f)(1- cos 2 f1/2)

Setrf > 1, then the transfer orbit does not contain a radius rf as computedetrf

on the final orbit and there is no solution to the transfer problem for the set of param-
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APPENDIX A - Continued

eters being considered. If this is not the case, then the assumption is made that the

sgn sin f? = sgn sin fi). This assumption is valid except for small values of sin fo

It is recommended that both signs of sin fo be examined for the smallest AV 2 if this

is the case. The unit vector i to the maneuver point can now be computed by

rx =cos t + fo cos - cos it sint sin t

r = cos (Wt + f) sin + cos i t sin(o t +fo )cos Ot

rz= sin (cot+ f) sin it

To simplify the further development, rotate to the X',Y',Z' coordinate system (sketch B)

and compute

sin 0 = r z

cos 0 = +(1- sin2 0) 1 /2

sin A = ry
cos e

cos A = rx
cos e

If cos 0 = 0, there is no solution as will be shown later. Thus, one can write as

rx? = cos 0

ry = 0

rz y = sin 0

Now impose the constraint that the latitude of i equals 5. To this end define a

unit vector P in the final orbit which is at a true anomaly of 4 and is at a latitude

of 5. Since the true anomaly of r is f and the true anomaly of P is 4, the angle

between r and P is f- ). Thus, the minor circle * = cos(fl- can inter-

sect the 6 latitude line at two points (see sketch B) and yield two solutions to the trans-

fer problem. The transfer with the lowest AV is desired. The vector P can be

determined from the following system of equations:
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APPENDIX A - Continued

p = cos(f - 4.)

P . z= cos (900 - 5) = sin 6

P* P= 1

From the second equation obtain

Pz, = sin 6

and from the first equation

Px' cos 0 + sin 0 sin = cos f -1)

or

cos( f - -sin 0 sin 6
Px cos 0

If cos 0 = 0, then 0 = 900 and r is along . In this case the minor circle defined by

SP = cos (ff - ) is a latitude line and a solution is possible only if cos (f I- ') = sin 6.

Since this is very unlikely, this case is not considered and no solution is assumed if

cos 0 = 0. The third equation yields

P 2 , = 1 - 2, _ P2
y P

P 2 < 0, then the minor circle r. P = cos (f - does not intersect the 6 latitude

line and there is no solution. If P2, > 0, then two solutions exist; namely,

P = ± 1_- P2 _2 1/2Py,:+(-P2-P,

Both of these solutions must be examined since they both satisfy all the constraints

placed on the transfer. The solution which has a plane of motion lying closest to the

transfer orbit costs less and is chosen. To determine this orbit, rotate P in the prime

system to the original X,Y,Z system; that is

Px = Px' cos A - P sin A

Py = Px' sin A + Py, cos A

Pz = sin 5
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APPENDIX A - Continued

where P y, > 0 has been arbitrarily chosen. The unit vector Hf normal to the plane

of the final orbit and in the direction of angular momentum can be found from

X XPx _ Pxf
f X sin(f

or

Hfx Pyrz - Pzry

Pzrx - yx rz
[Hf, 1 - ( Pxry - P yrxsin( - 4'

H Pr -Prx

The corresponding vector for the transfer orbit is given by

Htx = sin t sin it

Hty = -cos 2t sin it

Ht, z = cos it

From sketch C it can be seen that the angle which is the angle between the two planes

of motion at their line of intersection is given by cos ( = Ht f, or

cos = Ht,x Hf,x + Ht,yHfy + Ht, z Hf,z

At this point the other solution of P is examined, that is Py, < 0, and the value of cos

corresponding to this solution is calculated. The desired P is that one which has the

largest value of cos , or that solution which has a plane of motion lying closest to the

transfer orbit. Once this value is obtained, the sine of is calculated; that is,

sin = X fif ).r

or

sin ~ = (Ht, y Hf,z - Ht, z Hf, y)rx + (Ht,zHf, x - Ht,xHf, z)ry + (Ht, xHf,y - Ht,yHf,x)rz
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APPENDIX A - Continued

z

H 
Y

xt

H

ff

P

t  f
f

t

X

Sketch C

r

Plane of
transfer orbitPan o

final orbit

A2,r Y2 V 2

2,h

VI n

h

Sketch D
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APPENDIX A - Concluded

The difference in velocities AV 2 between the transfer orbit and the final orbit

at r remains to be calculated. The geometry of the velocity vectors is shown in

sketch D, where the following calculations lead to AV 2 :

] 1/2

et sin fo
sin (1 + 2 et cos fo + e 2 ) 1 / 2

Cos Y1 + (I - sin2 Y1 )1/2

V2 1/2

ef sin f
sin 2 1/2

(1 + 2 ef cos 4 + ef)

cos Y2 =+1 - sin 2 2)1/2

AV2,r = V 2 sin Y2 - V 1 sin y1

AV2,h = V2 cos Y2 cos - V 1 cos 1

AV 2 ,n = V2 cos Y2 sin

AV 2 = AV2,r + AV2,h + AV 2,n) 1/2
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APPENDIX B

RELATION BETWEEN PERIOD FACTOR AND VELOCITY FACTOR

Assume that the elements of two intersecting elliptical orbits are known. The

impulsive velocity maneuver between them is AV = V2 - V 1 . Further assume that the

period factor a required to obtain an intermediate orbit with period Pa is known;

that is,

Pa= P 1 
+ a(P 2 - P 1 )

It is desired to obtain a velocity factor av which when applied to AV yields an inter-
mediate orbit with period Pa. The semimajor axis of the a-orbit is

2 ]1/3

aa 0L(2,),i

The maneuver occurs at the true anomaly fo and a radius of

al(l - e)
r= 1 + e I cos fl

Thus, the magnitude of the velocity in the a -orbit is

1/2

Va 2_I

From the definition of the velocity factor,

Va = V1 + av AV

Squaring both sides yields

V V = (Vi + av~ V). (Vi + avV)

or

AV a + 2V. AVa + (V~- V)= 0
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APPENDIX B - Concluded

and the velocity factor is given by the quadratic formula as

1/2

2' (2 2
-V1 - AV I V1 * V -AV V1 - V a

a v = AV 2

where the sign of the radical is so chosen that 01v + 1 - a is a minimum.

A similar expression may be obtained for 0v by replacing the a related param-

eters with similar 3 related parameters.

43



REFERENCES

1. Gobetz, F. W.; and Doll, J. R.: A Survey of Impulsive Trajectories. AIAA J., vol. 7,
no. 5, May 1969, pp. 801-834.

2. Van Gelder, A.; Beltrami, E.; and Munick, H.: On Minimum-Time Minimum-Fuel
Rendezvous. J. Soc. Ind. & Appl. Math., vol. 9, no. 3, Sept. 1961, pp. 474-480.

3. Straly, W. H.: The Phasing Technique in Rendezvous. ARS J., vol. 32, no. 4, Apr.
1962, pp. 620-626.

4. Roth H. L.: Use of the Bi-Elliptic Transfer To Accomplish Single Rendezvous.
Rep. No. TOR-269(4130-10)-21 (Contract No. AF 04(695)-269), Aerospace Corp.,
Apr. 9, 1964. (Available from DDC as AD 486 040.)

5. Bender, D. F.: Rendezvous Possibilities With the Impulse of Optimum Two-Impulse
Transfer. Vol. 16, Pt. One of Advances in the Astronautical Sciences, Norman V.
Petersen, ed., Western Periodicals Co., Sept. 1963, pp. 271-291.

6. Eckel, K. G.: Expense Versus Time in Orbital Transfer to Rendezvous. Astrody-
namics Guidance and Control, P. Contensou, G. N. Duboshin, and W. F. Hilton, eds.,
Gordon & Breach, Inc., 1967, pp. 67-74.

7. Doll, J. R.: A Method for the Determination of Optimal Multiple-Impulse Rendezvous
Trajectories. J-970850-7 (Contract NAS 8-24440), United Aircraft Res. Lab.,
Feb. 1970. (Available as NASA CR-110195.)

8. McCue, Gary A.: Optimum Two-Impulse Orbital Transfer and Rendezvous Between
Inclined Elliptical Orbits. AIAA J., vol. 1, no. 8, Aug. 1963, pp. 1865-1872.

9. Kibler, James F.; Green, Richard N.; and Young, George R.: Orbital Trim by Velocity
Factoring With Applications to the Viking Mission. Proceedings of the National
Space Meeting of the Institute of Navigation, Inst. Nay., Mar. 1972, pp. 20-27.

10. Rosenbrock, H. H.: An Automatic Method for Finding the Greatest or Least Value of
a Function. Comput. J., vol. 3, 1960/1961, pp. 175-184.

11. McCuskey, S. W.: Introduction to Celestial Mechanics. Addison-Wesley Pub. Co.,
Inc., c.1963.

44



TABLE i.- DETERMINATION OF ALINEMENT ORBIT

Given: I,J,K,L,I
a

TYPE SOLUTION (BF,FB,BB,TF,FT)

o Alinement on initial orbit fio < N = I + 1

Alinement on a-orbit YES

A l i n e m e n t o n t r a n s f e r o r b i t N o

Alinement on D-orbit

F Alinement on final orbit
la < YES

NO BF

TF

0f ia NO YES

Lf , < l A f °  't t a<

YES = + K + 11T NO BF

S= + K BB

+0 + L
NOES NO

T a= +K + 1 L Aflo i

YES I

NO YES

FT FB NO

+ LJ f

a~ 
t O fo i YES Ia

,a < YES = + K + 1 YES

,a < YES + K BB NO BF F

+ L NO

F 
Ia < YES T = + L

YES

< NF Ia <YES

F NO

F
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TABLE 2.- BISECT-FULL TYPE SOLUTION

Rendezvous nn - C2

condition 1

AVT = c IAV1 + 1l - a IAV1 + AV2

C = J APo
1l to

C2 =( + J)Po + KPt + At
io 

+ Ati - Tr
0 t 0 t r

m = 0, 1, 2, ..., mb; n = 0, 1, 2, -, n b

Alinement on E = min (Im + C31}

initial orbit m

C = T - Ati
a 
-ia P

3 a,o 0 so

If c < Eb, minimize AVT over n.

Alinement on c = min 1 - ( C3 - O

a-orbit m,n 
C

C3 = AP +AIa oto + At 0o a,t a,o

C = (I + J')P + At
i0 

+ Ata -
0 0 aO

A o oA -A Afa
J' = ci [ a - I- 3600 0

360

If e Cb' solution is acceptable.

Alinement on = min m - C3 - C

transfer orbit m,n

C = J APto

C = (I + J)Po + K'Pt + At
io 

+ Aia -at
o, tt t t c[ io is is(Af'

0
+ Ar - Ar i

K' = ci a - I - J - 3600

If C < Cb' solution is acceptable.

Alinement on E = in me - C3 
- C4

final orbit m,n

C = J APto

io io isC = (I + J)Po
+ 

KPt + MPf + At0 + Att°+ Atf -Ta, f

F 1  ioO 10 is is

Mro+ Aft + Aff - Af
M ci [Ia - I - J - K 3600

If E < Cb solution is acceptable.
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TABLE 3.- FULL-BISECT TYPE SOLUTION

Rendezvous 2

1
condition

AVT = v + IavlvV2 + 11 - 6vlAV2

C = L APft

C2  IP + (K + L)Pt + At io+ Atio -
2 o t r

m = 0, 1, 2, *'', mb; n 
= 0, 1, 2, ***, nb

Alinement on e = min Im + C3

initial orbit m

= - Atia IP3 Tao 0 o

If c < b' minimize AVT over n.

Alinement on E = min m + C

transfer orbit

C = - At -
a 

- - K'P
3 at o 0 t t

/A~ t 0K'o = ciA ~ flO4 if Afl&a~
K' = ci Ia  3600

If e < cb' minimize AVT over n.b' T
Alinement on = min m1C - (n, C - C 1
3-orbit m,n

C = Ai Atoa+ L'AP - T + T
3 f t ft a f a t

10 10 oa

C = IP O + (K + L')Pt + Atio
+ 

At
O + 

At -a
t

t o t t a,t

AfO+ Af O+ AfO a- Af ia

L' = ci a - I - K - 360

If £ < eb, solution is acceptable.

Alinement on e = minm mC - (n C C2 03 - C

final orbit m,n 1

C3 = L APft

C 4 IPo + (K + L)Pt + Mf+ At + Atio + At a i
o0 t f a,f

SAf + Af + Af - Af i

M=ci I- I -K -L 360'

If C < E , solution is acceptable.
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TABLE 4.- BISECT-BISECT TYPE SOLUTION

Rendezvous -(nn - C )C + (m -C - )C2
a=- 3 5 + ( C 6  XEbC

condition C2C - Cc 5  
v

(nn - C3)C4 - (m C - Xcb)C 1
SC24 - C5 , C 5 B

AV = I IAV1 + 1i - %IAV 1 + 1vAV ' 1 - vAV2

C = J APto

C = L APft

C = (I + J)Po + (K + L)Pt + Atio + AtO - r
0 t r

m = 0, 1, 2, '-, mb; n = 0, 1, 2, ''', rb; X = -1, 0, 1

Alinement on C = min im + C
1

initial orbit m

C = At ia -aIP
0~ o so

If < Eb' minimize AVT over n, for the following four cases:

no - C3
1. v =0 and a 2

C2

nn - C - C
2. av 

= 
1 and s = 1 3

2

n - C
3. a 

= 
0 and ; n C v

1

n - C - C
4. v 

= 
1 and = 2 3 a v
V ~ C

Alinement on C = J'APto + At a O
a  

+0 to+ t- o - Ta~t +ar

.-orbit

C =0

C = (I + J')Po + Atio + Ata - T6 o ao

f io + oa - ia
J' = ci I

a  
0 0- 0

1 3 6 0 
°

Minimize AVT over m, n, X.

Alinement on C = C1

transfer orbit C5=0

C = (I + J)Po + K'Pt + Atio+ At - at
0 t a,t

Afio+ Afi - Af0
K' =ci Ia  I 3600

Minimize AVT over m, n, A.
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TABLE 4.- BISECT-BISECT TYPE SOLUTION - Concluded

Alinement on C = C
I

0-orbit
C = At

a 
- Atoa + L'AP - Ta f  a t5 f t ft a,f ,t

C6 
= (I + J)Po + (K + L')P + Atio + At + Ata -a t0 t t a, t

Af io+ Af o+ 6foa _ 
Af ia

L' = ci I a 
-I -J -K 0 360 t 0

Minimize AV over m, n, X.

Alinement on E = minm (nn - C
3
) - (mc C-

final orbit 
m,n

C = (I + J)Po + (K + L)Pt + MPf + At
i O 

+ Atio + Atif a, f

[aio + Af i
a - 

Af
a

M ci I
a 

- I-J -K- L - (Afo+ f 360

If E < b' minimize AV T 
over the four cases given for alinement

on initial orbit.
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TABLE 5.- TRISECT-FULL TYPE SOLUTION

Rendezvous AV T = a JAV1 + 1 I - +1AVl 1 - 6,l - I AVI + AV2
condition nn - C1la C3 J+L

C 2 ,(1 - ) 1 v

C1 = (J + L)APto

C2 = L APto

C3 = (I + J + L)P + KPAt o 
+ 

Atio r

m = 0, 1, 2, "**, mb; n = 0, 1, 2, ***, nb; X = -1, 0, 1

Alinement on = min mc  + C41
initial orbit m

C= Ta - Atia o
a, o a n

If E b, minimize AVT over n for the folloving 3 cases:

nf - C3
1. a = 0 and 8 = C

2

2. v = 0 and a = ; a

nr- C2 - C
3. v = 1 and a = CI - C ; a v

Alinement on m - Ab - C

n-orbit 4

C = J'APto + At Ato
a  

T +
t 0 -at d,.

C
5 = (I + J')P + At

i
o + Ato a ,o

o o- ia
5 0 0 aOl

J' = ci Ia - I 360

Minimize AVT over m, n, A.

Alinement on (n - C3 - C)2 + C2 Xb

2-orbit ClC - C2C4

C (J + L')APto + t oa at ao
S= to t o - a,t a,o

C =L'AP + Atta - At
a 

-T + T5 to t 0 at a,o

C6 = (I + J + L')Po 
+ 

Atio 
+ 
Ata - T

0 0 -a,o

[ I _j r i + Afoa -Af iS 1L' = ci a - - - 3600 o

Minimize AVT over m, n, X.
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TABLE 5.- TRISECT-FULL TYPE SOLUTION - Concluded

Alinement on = min l(nn - C3) - (mE - C

transfer orbit m,n

C = (I + J + L)P O 
+ K'Pt + Atio 

+ 
At 

a  
t

0 t at

( + Af i - Af

K' = ci I
a 

- I - J - L - 360

I a 
360'

If E < 6 b
, 
minimize AV over the 3 cases given for

alinement on initial orbit.

Alinement on = min (nn - C3 ) - (m - C

final orbit m,n

C (I + J + L)Po + KP
t 

+  
MPf + At d + At + Atia a,

Af o+ Af + Af ia- a

M = i Ta  I -J -K -3600
°
-f

c 3600

If 6 < b minimize AV T 
over the 3 cases given for

alinement on initial orbit.
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TABLE 6.- FULL-TRISECT TYPE SOLUTION

Rendezvous AVT = AVI + 'vAV2 + v111 - a vlAV2 + 1i - vlll - avlAV2

condition nn - CI - C3  L
nf - a L C

-=  
02(11- a) ; l # -- ; B + 8

C
1 = (J + L)APft

C2 = L APft

C = IPo + (J + K + L)P
t + Ati + At - r

3 o0 t r

m = 0, 1, 2, '-*, mb; n = 0, 1, 2, "*', nb; A = -1, 0, 1

Alinement on m = min Im + C4I

initial orbit m

C4=T -At is- I P= - At a  
a0

If C ,b' minimize AVT over n for the following 3 cases:

nr - C
1. a v = 0 and 

=  
C2 

v
2

nl - C
2. 8v = 0 and a = C1 ; a

nl - C - C3
3. 8v 

= 
1 and a = C - C ; a + a

1 2

Alinement on C = min jm + C41

transfer orbit m

C4 = Ta,t - Atoo Io - Ati
a 
- K'P

0 0 t t

Afio i i

K = i a -360'

If £ < Eb' minimize AVT over n for the cases given for

alinment on initial orbit.

Alinement on me - Acb - C

a-orbit C v

C = J'APft + Atf
a 

- ta a
f 
+ a

t

C5 = IPo + (J' + K)Pt + Atio + Atio + Atoa - ,t
5 ot o t t >t

fio+ io+ Afoa- fia

J = ci Ia - I - K - (A 360

Minimize AVT over m, n, A.
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TABLE 6.- FULL-TRISECT TYPE SOLUTION - Concluded

Alinement on (nn - C 3)C 5 - (mc - C6 )C 2 + C 2  b

B-orbit = C1C5 
- C2C ; a a

C = (J + L')APft + At 
a 

- a af a,t

C = L'AP + Ati
a 

- At 
T
af + T

5 ft f t S a~t

C = IPo + (J + K + L')P + Atio o a - at

o 0 t t t

f + Afio oa ia
=ci1..IfK A+ Af t 

- AfC a

L' = ci a 
- I - J - K - t 360 t 0

Minimize AVT over m, n, 1.

Alinement on C =mi
n  l(nn - C3)- (m - C)

final orbit 
m,n

C = IP O 
+ (J + K + L)P + MPf + Atio + Atio + Ati

a 
- Tafo0 t f of

M c 0 o+ACl - ACS-io A f i i

M = ci - I - J K -K - 360Q

If E < Eb minimize AV over the 3 cases.given for

alinement on initial orbit.
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